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1. BACKGROUND AND DATA

We are presenting a classification of an AVIRIS spectral image of
the Lunar Crater Volcanic Field (LCVF) (Fig. 1.a). Geologic mapping from
such data is made possible by distinctive mineral signatures: absorption
features and the shape of the spectral continuum. The subtle spectral shape
differences between some of the geological units in this scene along with the
high dimensionality of the spectra presents a challenging pattern recognition
task (Fig. 2.). We found an artificial neural network powerful in separating
13 geological units based on the full spectral resolution. ‘

The LCVF, in northern Nye County, Nevada, was the primary focus
of the NASA-sponsored Geologic Remote Sensing Field Experiment in the
summer of 1989, It consists of over 100 square miles of Quaternary basaltic
pyroclastic and flow deposits (Scott and Trask, 1971). These deposits lie atop
ignimbrites and silicic lava flows of Tertiary age and in turn are overlain by
5uaternary alluvial and playa deposits. This AVIRIS image was collected
on September 29, 1989 at 11:44 PDT. The 256-by-256 pixel subsection in
this study contains oxidized basaltic cinder deposits, the southern half of the
Lunar Lake playa, and outcrops of the Rhyolite of Big Sand Spring Valley
(mapped by Ekren et al., 1972). Vegetation in LCVF is sparse, but locally
abundant within washes and near springs (Fig. 1.a).

2. CLASSIFICATION TECHNIQUE AND RESULTS

Artificial neural networks (ANN’s) are parallel distributed comput-
ing architectures that learn to solve problems from examples. An intro-
duction and overview can be found, for example, in (Pao, 1991). ANN’s
have proved powerful for the classification of complicated, noisy, real-life
data (e. g., Huang and Lippman, 1987; Benediktsson et al. 1990; Hepner
‘et al. 1990; Merényi et al. 1992). Many varieties of ANN’s have been de-
vised for different types of tasks. The most widely used paradigm is the
Backpropagation, owing to its general applicability. Backpropagation, how-
ever, can be difficult to train, especially with large input vectors. Good
training for the separation of classes with subtle differences may require a
very high number of training samples. This could be problematic in remote
sensing applications, because of limited field knowledge.

- We used here a Kohonen-type Self-Organizing ANN combined with a
categorization learning output layer (by NeuralWare, Inc., 1991). This first
establishes a topological map of the cluster structure of the data in its 2-D
hidden Kohonen layer (Kohonen, 1988), in an unsupervised regime. Then it
is trained, in supervised mode, to assign class labels to the training patterns.
The preformed clusters help keep the ANN from learning contradicting class
labels by merely memorizing each case instead of deriving class ﬁroperties.
This can easily happen with a Backpropagation network when the number
of training samples is small. Another advantage over Backpropagation is
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that the training is easier and much shorter. More details on how this ANN
configuration works is given in Howell et al. (1993).

Approximately 30 training samples were selected for each of 13 spec-
tral types (Fig. 2. left box) on the basis of spectral pattern differences and
geological field knowledge. The data set consisted of 158 channels after the
exclusion of spectrometer overlap, atmospheric water bands and excessively
noisy channels. As explained on Fig. 2., the ANN produces reliable classi-
fication for all 13 classes, based on training with 0.6% of the image data.
Corresponding geological maps (e. g., Scott and Trask, 1971) and field ex-
periences confirm that each class is an identifiable geological unit in the
test site. The 3 units that were mapped by earlier linear mixture modeling
(Farrand and Singer, 1991), cinder, rhyolite and playa, are well matched
and further broken down according to more subtle compositional differences
which are in turn indicative of geologic processes (Fig. 1.b).

As little as 0.6% of the image data was sufficient for training to pro-
duce the presented geological details with this ANN. An important advantage
of the Self-Organizing neural network over the most commonly used Back-
propagation is that it achieves higher classification accuracy on test data
based on a small amount of training data (e. g., Benediktsson et al. 1990).
This enables very cost-effective sampling of remote sensing sites.
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